Deletion from Red-Black Trees
Setting Up Deletion

As with binary search trees, we can always delete a node that has at least one external child.

If the key to be deleted is stored at a node that has no external children, we move there the key of its inorder predecessor (or successor), and delete that node instead.

Example: to delete key 7, we move key 5 to node u, and delete node v.
Deletion Algorithm

1. Remove v with a removeAboveExternal operation on a leaf child w of v
2. If v was red or u is red, color u black. Else, color u double black.

3. While a double black edge exists, perform one of the following actions ...
How to Eliminate the Double Black Edge

• The intuitive idea is to perform a “color compensation”

• Find a red edge nearby, and change the pair (red, double black) into (black, black)

• As for insertion, we have two cases:
 • restructuring, and
 • recoloring (demotion, inverse of promotion)

• Restructuring resolves the problem locally, while recoloring may propagate it two levels up

• Slightly more complicated than insertion, since two restructurings may occur (instead of just one)
Case 1: black sibling with a red child

- If sibling is **black** and one of its children is **red**, perform a *restructuring*

![Diagram showing restructuring](image)
(2,4) Tree Interpretation

(2,4) Trees
Case 2: black sibling with black children

- If sibling and its children are black, perform a *recoloring*
- If parent becomes *double black*, *continue* upward
(2,4) Tree Interpretation
Case 3: red sibling

- If sibling is red, perform an adjustment
- Now the sibling is black and one of the previous cases applies
- If the next case is recoloring, there is no propagation upward (parent is now red)
How About an Example?

Remove 9

(2,4) Trees
Example

What do we know?
• Sibling is black with black children

What do we do?
• Recoloring
Example

Delete 8
• no double black

(2,4) Trees
Example

Delete 7
- Restructuring

(2,4) Trees
Example

(2,4) Trees
Example
Summary of Red-Black Trees

- An insertion or deletion may cause a local *perturbation* (two consecutive red edges, or a double-black edge)

- The perturbation is either
 - *resolved locally* (restructuring), or
 - *propagated* to a higher level in the tree by recoloring (promotion or demotion)

- O(1) time for a restructuring or recoloring

- At most one restructuring per insertion, and at most two restructurings per deletion

- O(log N) recolorings

- Total time: O(log N)