SHORTEST PATHS

- Weighted Digraphs
- Shortest paths
Weighted Graphs

- **weights** on the edges of a graph represent distances, costs, etc.
- An example of an undirected weighted graph:
Shortest Path

- BFS finds paths with the minimum number of edges from the start vertex.
- Hence, BFS finds shortest paths assuming that each edge has the same weight.
- In many applications, e.g., transportation networks, the edges of a graph have different weights.
- How can we find paths of minimum total weight?
- Example - Boston to Los Angeles:
Dijkstra’s Algorithm

• Dijkstra’s algorithm finds shortest paths from a start vertex \(v \) to all the other vertices in a graph with
 - undirected edges
 - nonnegative edge weights

• the algorithm computes for each vertex \(u \) the distance of \(u \) from the start vertex \(v \), that is, the weight of a shortest path between \(v \) and \(u \).

• the algorithm keeps track of the set of vertices for which the distance has been computed, called the cloud \(C \)

• Every vertex has a label \(D \) associated with it. For any vertex \(u \), we can refer to its \(D \) label as \(D[u] \). \(D[u] \) stores an approximation of the distance between \(v \) and \(u \). The algorithm will update a \(D[u] \) value when it finds a shorter path from \(v \) to \(u \).

• When a vertex \(u \) is added to the cloud, its label \(D[u] \) is equal to the actual (final) distance between the starting vertex \(v \) and vertex \(u \).

• initially, we set
 - \(D[v] = 0 \) ...the distance from \(v \) to itself is 0...
 - \(D[u] = \infty \) for \(u \neq v \) ...these will change...
The Algorithm: Expanding the Cloud

- Repeat until all vertices have been put in the cloud:
 - let u be a vertex not in the cloud that has smallest label D[u]. (On the first iteration, naturally the starting vertex will be chosen.)
 - we add u to the cloud C
 - we update the labels of the adjacent vertices of u as follows
 for each vertex z adjacent to u do
 if z is not in the cloud C then
 if D[u] + weight(u,z) < D[z] then
 D[z] = D[u] + weight(u,z)

- the above step is called a relaxation of edge (u,z)

v was put in the cloud first. Then this u. Then this u.
Pseudocode

• we use a priority queue Q to store the vertices not in the cloud, where $D[v]$ the key of a vertex v in Q

Algorithm ShortestPath(G, v):

Input: A weighted graph G and a distinguished vertex v of G.

Output: A label $D[u]$, for each vertex that u of G, such that $D[u]$ is the length of a shortest path from v to u in G.

initialize $D[v] \leftarrow 0$ and $D[u] \leftarrow +\infty$ for each vertex $v \neq u$

let Q be a priority queue that contains all of the vertices of G using the D labels as keys.

while $Q \neq \emptyset$ do

{pull u into the cloud C}

$u \leftarrow Q$.removeMinElement()

for each vertex z adjacent to u such that z is in Q do

{perform the relaxation operation on edge (u, z)}

if $D[u] + w((u, z)) < D[z]$ then

$D[z] \leftarrow D[u] + w((u, z))$

change the key value of z in Q to $D[z]$

return the label $D[u]$ of each vertex u.
Example: shortest paths starting from BWI

<table>
<thead>
<tr>
<th></th>
<th>parent</th>
<th>distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOS</td>
<td>BWI</td>
<td>∞</td>
</tr>
<tr>
<td>BWI</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>DFW</td>
<td></td>
<td>∞</td>
</tr>
<tr>
<td>JFK</td>
<td>BWI</td>
<td>184</td>
</tr>
<tr>
<td>LAX</td>
<td></td>
<td>∞</td>
</tr>
<tr>
<td>MIA</td>
<td>BWI</td>
<td>946</td>
</tr>
<tr>
<td>ORD</td>
<td>BWI</td>
<td>621</td>
</tr>
<tr>
<td>PVD</td>
<td>BWI</td>
<td>∞</td>
</tr>
<tr>
<td>SFO</td>
<td></td>
<td>∞</td>
</tr>
</tbody>
</table>

Shortest Paths
• JFK is the nearest...

<table>
<thead>
<tr>
<th>parent</th>
<th>distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOS</td>
<td>JFK</td>
</tr>
<tr>
<td>BWI</td>
<td>0</td>
</tr>
<tr>
<td>DFW</td>
<td>JFK</td>
</tr>
<tr>
<td>JFK</td>
<td>BWI</td>
</tr>
<tr>
<td>LAX</td>
<td>∞</td>
</tr>
<tr>
<td>MIA</td>
<td>BWI</td>
</tr>
<tr>
<td>ORD</td>
<td>BWI</td>
</tr>
<tr>
<td>PVD</td>
<td>JFK</td>
</tr>
<tr>
<td>SFO</td>
<td>∞</td>
</tr>
</tbody>
</table>
• followed by sunny PVD.
• BOS is just a little further.
• ORD: Chicago is my kind of town.

![Diagram of shortest paths with distances and parent nodes]

<table>
<thead>
<tr>
<th>shortest paths</th>
<th>parent</th>
<th>distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOS</td>
<td>JFK</td>
<td>371</td>
</tr>
<tr>
<td>BWI</td>
<td>JFK</td>
<td>0</td>
</tr>
<tr>
<td>DFW</td>
<td>ORD</td>
<td>1423</td>
</tr>
<tr>
<td>JFK</td>
<td>BWI</td>
<td>184</td>
</tr>
<tr>
<td>LAX</td>
<td>DFW</td>
<td>∞</td>
</tr>
<tr>
<td>MIA</td>
<td>BWI</td>
<td>946</td>
</tr>
<tr>
<td>ORD</td>
<td>BWI</td>
<td>621</td>
</tr>
<tr>
<td>PVD</td>
<td>JFK</td>
<td>328</td>
</tr>
<tr>
<td>SFO</td>
<td>ORD</td>
<td>2467</td>
</tr>
</tbody>
</table>

Note that D for DWF was adjusted on this turn also for SFO.
• MIA, just after Spring Break.
- DFW is huge like Texas.
• SFO: the 49’ers will take the prize next year.
• LAX is the last stop on the journey.
Running Time

• Let’s assume that we represent G with an adjacency list. We can then step through all the vertices adjacent to u in time proportional to their number (i.e. $O(j)$ where j in the number of vertices adjacent to u)

• The priority queue Q - we have a choice:
 - A **Heap**: Implementing Q with a heap allows for efficient extraction of vertices with the smallest D label($O(\log N)$). If Q is implemented with locators, key updates can be performed in $O(\log N)$ time. The total run time is $O((n+m)\log n)$ where n is the number of vertices in G and m in the number of edges. In terms of n, worst case time is $O(n^2 \log n)$
 - An **Unsorted Sequence**: $O(n)$ when we extract minimum elements, but fast key updates ($O(1)$). There are only n-1 extractions and m relaxations. The running time is $O(n^2 + m)$

• In terms of **worst case** time, heap is good for small data sets and sequence for larger.
Running Time (cont)

- The **average case** is a slightly different story. Consider this:
 - If priority queue Q is implemented with a heap, the bottleneck step is updating the key of a vertex in Q. In the worst case, we would need to perform an update for every edge in the graph.
 - For most graphs, though, this would not happen. Using the **random neighbor-order** assumption, we can observe that for each vertex, its neighbor vertices will be pulled into the cloud in essentially random order. So here are only $O(\log n)$ updates to the key of a vertex.
 - Under this assumption, the run time of the heap implementation is $O(n\log n + m)$, which is always $O(n^2)$. **The heap implementation is thus preferable for all but degenerate cases.**
Dijkstra’s Algorithm, some things to think about...

• In our example, the weight is the geographical distance. However, the weight could just as easily represent the cost or time to fly the given route.

• We can easily modify **Dijkstra’s algorithm for different needs**, for instance:
 - If we just want to know the shortest path from vertex v to a single vertex u, we can stop the algorithm as soon as u is pulled into the cloud.
 - Or, we could have the algorithm output a tree T rooted at v such that the path in T from v to a vertex u is a shortest path from v to u.

• **How to keep track of weights and distances?** Edges and vertices do not “know” their weights/distances. Take advantage of the fact that \(D[u] \) is the key for vertex u in the priority queue, and thus \(D[u] \) can be retrieved if we know the locator of u in Q.

• Need some way of:
 - associating PQ locators with the vertices
 - storing and retrieving the edge weights
 - returning the final vertex distances