Thank goodness! It’s Quicksort Man! Help me!

I’m on my way, Bubble Sort Man.
Quick-Sort

• To understand quick-sort, let’s look at a high-level description of the algorithm

• 1) **Divide**: If the sequence S has 2 or more elements, select an element x from S to be your pivot. Any arbitrary element, like the last, will do. Remove all the elements of S and divide them into 3 sequences:
 - L, holds S’s elements less than x
 - E, holds S’s elements equal to x
 - G, holds S’s elements greater than x

• 2) **Recurse**: Recursively sort L and G

• 3) **Conquer**: Finally, to put elements back into S in order, first inserts the elements of L, then those of E, and those of G.

• Here are some pretty diagrams....
Idea of Quick Sort

1. Select
 pick *an* element

2. Devide
 rearrange elements so that
 • *x* goes to its final position *E*

3. Recurse and Conquer
 recursively sort
Quick-Sort Tree

7 6 2 10 4 5 9 8

7 6 2 4 5 8 10 9

7.4
Quick-Sort Tree
Quick-Sort Tree
Quick-Sort Tree

2 4

5 7 6

8 10 9

2 4

5 7 6

8 10 9

2 4

5 7 6

8 10 9
Quick-Sort Tree

2 4 5 6 7 8 10 9

Diagram of a Quicksort algorithm as a tree structure.
Quick-Sort Tree

Skipping ...
... Finally

2 4 5 6 7

2 4 5 6 7 8 9 10

2 4 5 6 7 8 9 10
In-Place Quick-Sort

• **Divide step**: l scans the sequence from the left, and r from the right.

```
85  24  63  45  17  31  96  50
  l                        r
```

• A swap is performed when l is at an element larger than the pivot and r is at one smaller than the pivot.

```
31  24  63  45  17  85  96  50
  l                        r
```
• A final swap with the pivot completes the divide step
In Place Quick Sort code

public class ArrayQuickSort implements SortObject {

 public void sort(Sequence S, Comparator c) {
 quicksort(S, C, 0, S.size() - 1);
 }

 private void quicksort(Sequence S, Comparator c, int leftBound, int rightBound) {
 // left and rightmost ranks of // sorting range
 if (S.size() < 2) return; // a sequence with 0 or // 1 elements is already sorted
 if (leftBound >= rightBound) return; // terminate // recursion

 // pick the pivot as the current last // element in range
 Object pivot = S.atRank(rightBound).element();

 // indices used to scan the sorting range
 int leftIndex = leftBound; // will scan // rightward
 int rightIndex = rightBound - 1; // will scan // leftward
In Place Quick Sort code
(contd.)

// outer loop
while (leftIndex <= rightIndex) {

 // scan rightward until an element larger than
 // the pivot is found or the indices cross
 while ((leftIndex <= rightIndex) &&
 (c.isLessThanOrEqualTo
 (S.atRank(leftIndex).element(),pivot))
 leftIndex++;

 // scan leftward until an element smaller than
 // the pivot is found or the indices cross
 while (rightIndex >= leftIndex) &&
 (c.isGreaterThanOrEqualTo
 (S.atRank(rightIndex).element(),pivot))
 rightIndex--;

 // if an element larger than the pivot and an
 // element smaller than the pivot have been
 // found, swap them
 if (leftIndex < rightIndex)
 S.swap(S.atRank(leftIndex),S.atRank(rightIndex));

} // the outer loop continues until
// the indices cross. End of outer loop.
In Place Quick Sort code (contd.)

// put the pivot in its place by swapping it with the element at leftIndex
S.swap(S.atRank(leftIndex),S.atRank(rightBound));

// the pivot is now at leftIndex, so recur on both sides
quicksort(S, c, leftBound, leftIndex-1);
quickSort(S, c, leftIndex+1, rightBound);

} // end quicksort method

} // end ArrayQuickSort class
Analysis of Running Time

- Consider a quick-sort tree T:
 - Let $s_i(n)$ denote the sum of the input sizes of the nodes at depth i in T.
- We know that $s_0(n) = n$ since the root of T is associated with the entire input set.
- Also, $s_1(n) = n - 1$ since the pivot is not propagated.
- Thus: either $s_2(n) = n - 3$, or $n - 2$ (if one of the nodes has a zero input size).

The worst case running time of a quick-sort is then:

$$O\left(\sum_{i=0}^{n-1} s_i(n)\right)$$

Which reduces to:

$$O\left(\sum_{i=0}^{n-1} (n - i)\right) = O\left(\sum_{i=1}^{n} i\right) = O(n^2)$$

Thus quick-sort runs in time $O(n^2)$ in the worst case.
Analysis of Running Time (contd.)

- Now to look at the best case running time:

- We can see that quicksort behaves optimally if, whenever a sequence S is divided into subsequences L and G, they are of equal size.

- More precisely:
 - \(s_0(n) = n \)
 - \(s_1(n) = n - 1 \)
 - \(s_2(n) = n - (1 + 2) = n - 3 \)
 - \(s_3(n) = n - (1 + 2 + 2^2) = n - 7 \)

 ...

 - \(s_i(n) = n - (1 + 2 + 2^2 + ... + 2^{i-1}) = n - 2^i + 1 \)

 ...

- This implies that \(T \) has height \(O(\log n) \)

- Best Case Time Complexity: \(O(n\log n) \)
Randomized Quick-Sort

• Select the pivot as a *random* element of the sequence

• The expected running time of randomized quick-sort on a sequence of size n is $O(n \log n)$

• The time spent at a level of the quick-sort tree is $O(n)$

• We show that the *expected height* of the quick-sort tree is $O(\log n)$

• good vs. bad pivots

 - **good**: $1/4 \leq n_L/n \leq 3/4$
 - **bad**: $n_L/n < 1/4$ or $n_L/n > 3/4$

• the probability of a good pivot is 1/2, thus we expect $k/2$ good pivots out of k pivots

• after a good pivot the size of each child sequence is at most 3/4 the size of the parent sequence

• After h pivots, we expect $(3/4)^{h/2} \ n$ elements

• the expected height h of the quick-sort tree is at most:

 $$2 \log_{4/3} n$$