MORE MERGE SORT

• Java implementation

• Time complexity

• Generic merging and sets
Java Implementation of Merge-Sort

- Interface SortObject

```java
public interface SortObject {

    // sort sequence S in nondecreasing order using comparator c
    public void sort (Sequence S, Comparator c);
}
```
Java Implementation of Merge-Sort(cont.)

```java
public class ListMergeSort implements SortObject {
    public void sort(Sequence S, Comparator c) {
        int n = S.size();
        if (n < 2) return; // a sequence with 0 or 1 element is already sorted.
        // divide
        Sequence S1 = (Sequence) S.newContainer();
        // put the first half of S into S1
        for (int i=1; i <= (n+1)/2; i++) {
            S1.insertLast(S.remove(S.first()));
        }
        Sequence S2 = (Sequence) S.newContainer();
        // put the second half of S into S2
        for (int i=1; i <= n/2; i++) {
            S2.insertLast(S.remove(S.first()));
        }
        sort(S1,c);  // recur
        sort(S2,c);
        merge(S1,S2,c,S);  // conquer
    }
}
```
public void merge(Sequence S1, Sequence S2, Comparator c, Sequence S) {
 while(!S1.isEmpty() && !S2.isEmpty()) {
 if(c.isLessThanOrEqualTo(S1.first().element(), S2.first().element())) {
 // S1’s 1st elt <= S2’s 1st elt
 S.insertLast(S1.remove(S1.first()));
 }
 else { // S2’s 1st elt is the smaller one
 S.insertLast(S2.remove(S2.first()));
 }
 }

 if(S1.isEmpty()) {
 while(!S2.isEmpty()) {
 S.insertLast(S2.remove(S2.first()));
 }
 }

 if(S2.isEmpty()) {
 while(!S1.isEmpty()) {
 S.insertLast(S1.remove(S1.first()));
 }
 }
}
Running Time of Merge-Sort

- **Proposition 1**: The merge-sort tree associated with the execution of a merge-sort on a sequence of n elements has a height of $\lceil \log n \rceil$.

- **Proposition 2**: A merge sort algorithm sorts a sequence of size n in $O(n \log n)$ time.

- We assume only that the input sequence S and each of the sub-sequences created by each recursive call of the algorithm can access, insert to, and delete from the first and last nodes in $O(1)$ time.

- We call the time spent at node v of merge-sort tree T the running time of the recursive call associated with v, excluding the recursive calls sent to v’s children.
Running Time of Merge-Sort (cont.)

- If we let i represent the depth of node v in the merge-sort tree, the time spent at node v is $O(n/2^i)$ since the size of the sequence associated with v is $n/2^i$.

- Observe that T has exactly 2^i nodes at depth i. The total time spent at depth i in the tree is then $O(2^i n/2^i)$, which is $O(n)$. We know the tree has height $\lceil \log n \rceil$

 Therefore, the time complexity is $O(n \log n)$
Set ADT

• A Set is a data structure modeled after the mathematical notation of a set. The fundamental set operations are union, intersection, and subtraction.

• A brief aside on mathematical set notation:
 - A ∪ B = { x: x ∈ A or x ∈ B }
 - A ∩ B = { x: x ∈ A and x ∈ B }
 - A − B = { x: x ∈ A and x ∉ B }

• The specific methods for a Set A include the following:
 - union(B):
 Set A equal to A ∪ B.
 - intersect(B):
 Set A equal to A ∩ B.
 - subtract(B):
 Set A equal to A − B.
Generic Merging

Algorithm genericMerge(A, B):

- **Input**: Sorted sequences A and B
- **Output**: Sorted sequence C

let A' be a copy of A { We won’t destroy A and B }
let B' be a copy of B

while A' and B' are not empty do
 $a ← A'$.first()
 $b ← B'$.first()
 if $a < b$ then
 aIsLess(a, C)
 A'.removeFirst()
 else if $a = b$ then
 bothAreEqual(a, b, C)
 A'.removeFirst()
 B'.removeFirst()
 else
 bIsLess(b, C)
 B'.removeFirst()

while A' is not empty do
 $a ← A'$.first()
 aIsLess(a, C)
 A'.removeFirst()

while B' is not empty do
 $b ← B'$.first()
 bIsLess(b, C)
 B'.removeFirst()
Set Operations

• We can specialize the generic merge algorithm to perform set operations like union, intersection, and subtraction.

• The generic merge algorithm examines and compare the current elements of A and B.

• Based upon the outcome of the comparison, it determines if it should copy one or none of the elements a and b into C.

• This decision is based upon the particular operation we are performing, i.e. union, intersection or subtraction.

• For example, if our operation is union, we copy the smaller of a and b to C and if $a=b$ then it copies either one (say a).

• We define our copy actions in aIsLess, bothAreEqual, and bIsLess.

• Let’s see how this is done ...
Set Operations (cont.)

• For union

```java
public class UnionMerger extends Merger {
    protected void aIsLess(Object a, Object b, Sequence C) {
        C.insertLast(a);
    }
    protected void bothAreEqual(Object a, Object b, Sequence C) {
        C.insertLast(a);
    }
    protected void bIsLess(Object b, Sequence C) {
        C.insertLast(b);
    }
}
```

• For intersect

```java
public class IntersectMerger extends Merger {
    protected void aIsLess(Object a, Object b, Sequence C) {
    }
    protected void bothAreEqual(Object a, Object b, Sequence C) {
        C.insertLast(a);
    }
    protected void bIsLess(Object b, Sequence C) {
    }
}
```
Set Operations (cont.)

• For subtraction

```java
public class SubtractMerger extends Merger {
    protected void aIsLess(Object a, Object b, Sequence C) {
        C.insertLast(a);
    }

    protected void bothAreEqual(Object a, Object b, Sequence C) {
    }

    protected void bIsLess(Object b, Sequence C) {
    }
}
```